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There is enduring debate over the question of which early-life effects are

adaptive and which ones are not. Mathematical modelling shows that

early-life effects can be adaptive in environments that have particular statisti-

cal properties, such as reliable cues to current conditions and high

autocorrelation of environmental states. However, few empirical studies

have measured these properties, leading to an impasse. Progress, therefore,

depends on research that quantifies cue reliability and autocorrelation of

environmental parameters in real environments. These statistics may be

different for social and non-social aspects of the environment. In this

paper, we summarize evolutionary models of early-life effects. Then, we dis-

cuss empirical data on environmental statistics from a range of disciplines.

We highlight cases where data on environmental statistics have been used

to test competing explanations of early-life effects. We conclude by provid-

ing guidelines for new data collection and reflections on future directions.

This article is part of the theme issue ‘Developing differences: early-life

effects and evolutionary medicine’.
1. Introduction
Early-life effects are widely observed in nature, from tiny Daphnia to long-lived

humans. Strictly, early-life effects are defined as cases where an input early in

life has a larger effect on the adult phenotype than the same input occurring

later in life [1]. In practice, the comparison with the same input occurring

later in life is rarely made, and so early-life effects simply denote cases where

an early input produces a substantial and enduring impact on the adult pheno-

type. The term ‘early life’ itself refers to the period from conception to the end

of juvenile growth and the onset of sexual maturation [2].

Early-life effects are thus phenotypically plastic responses that depend on a

sensitive period—i.e. a period in which experience shapes phenotypic develop-

ment to a larger extent than other periods [1,3]—in the prenatal or juvenile life

stage. Early-life effects are not inevitable: some bird species learn new songs

throughout their lives and others only in their first weeks [4]. They are not uni-

form: members of the same species lose their plasticity at different rates [5]. Nor

are they general: plasticity trajectories differ between traits within a single indi-

vidual [6]. What explains variation in early-life effects between species,

individuals and traits? Why are early-life effects irreversible in some cases,

but not in others?

In recent decades, there has been major progress in our understanding of

the neural-cognitive mechanisms of early-life effects [7]. It is now possible to

modify aspects of early-life effects, such as their onset, offset and duration,

for a variety of traits (e.g. sensory, cognitive and stress response systems) in a

variety of species—including non-human primates, rodents and birds—

through environmental or pharmacological manipulation. This work holds
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great promise for future interventions; for instance, by

enabling erasure of signatures of trauma. Despite such pro-

gress, we know little about the ultimate evolutionary

pressures that shape the proximate mechanisms producing

early-life effects [1].

(a) Constraint or adaptation?
A conventional view in both biomedicine and in behavioural

ecology is that early-life effects reveal constraints on available

resources for development. That is, the early-life input

deprives the developing organism of a critical resource (or

lifts a resource constraint), resulting in an adult phenotype

that is of lower (or higher) quality than it would otherwise

be (a ‘silver spoon’ effect; [8,9]). However, constraints and

silver spoons cannot explain all early-life effects [10–12].

For example, in zebra finches, early-life exposure to heat

stress may increase adult survival, but only when heat

stress is encountered again in adulthood [13]. Explanations

of such early-life effects are based on two ideas: first, there

are conditional adaptations (if the environment is hot, then

a certain phenotype enhances fitness, but otherwise it does

not); and second, early experience carries information (if it is

hot now, early in ontogeny, it is also likely to be hot at

later-life stages). Organisms can exploit the information pro-

vided by their early-life experiences to better match their

phenotypes to their adult conditions. This process has been

likened to a ‘weather forecast’ [14]. How widespread such

early-life effects (known as external predictive adaptive

responses, PARs) are, which cases are convincing examples,

and what exactly it is that the organism is forecasting are

much-debated topics [15–19].

One key resource for making progress on the question is

theory. There has been a considerable proliferation of formal

theory dealing with adaptive early-life effects (e.g. [15,17,20–

31]). These models all find conditions under which it could

potentially be adaptive to use early experience to set the

adult phenotype. However, whether it is fitness-enhancing

to do so or not always depends on the assumed statistical

properties of the environment, as well as assumptions

about the properties of the organisms. Indeed, much of the

focus in this theoretical work is on identifying those proper-

ties of environments and features of organisms that would

make informational early-life effects potentially adaptive.

(b) Bridging theory and data
To date, the link from theory to empirical evidence has not

been strong. That is, although the models suggest that

whether or not a particular early-life effect could be adaptive

depends on statistical properties of the environment, few

empiricists invest in measuring these properties. For instance,

Uller et al. [32] carried out a meta-analysis of experimental

studies of anticipatory parental effects, where the environ-

ment experienced by the parent affects the phenotype of

the offspring. Formal theory suggests that, if such effects

are really informational, they should only be expected

where environmental conditions are correlated across gener-

ations, so that the experience of the parent provides

information about the likely experience of the offspring.

Uller et al. [32] found that only 7 of the 58 studies they

reviewed provided data, or cited papers including data,

about whether such correlations actually existed for that

species in the wild. As Burgess & Marshall note: ‘in the
absence of explicitly estimating the reliability of environ-

mental cues, the adaptive significance of plasticity remains

unclear’ [33, p. 2329].

Mathematical modelling can elucidate what processes

and outcomes to expect depending on different conditions.

However, only empirical data can teach us what conditions

actually apply to particular species or taxa. At present, for

the vast majority of species, there is a dearth of data on

environmental statistics in the wild, or else those data have

not been integrated into the study of early-life effects. The

aims of this paper are to make a case for greater attention

to the statistics of environments and to suggest sources of

evidence where they already exist.

There have been prior excellent calls for quantifying

environmental statistics. In particular, Burgess & Marshall

[34,35] have analysed the role of environmental predictability

in shaping adaptive maternal effects and the evolution of life

histories, formally and empirically. Because of their focus on

maternal effects in particular, their analyses emphasize the

statistics of non-social environments across generations, such

as correlations between parent and offspring conditions (e.g.

in temperature or rainfall). The current paper, by contrast,

emphasizes statistics of social environments within gener-

ations; in particular, cues to the present conditions and

correlations between social conditions experienced early and

later in life. We make only one excursion to intergenerational

transmission of resources (in §3c). As a consequence, we do

not discuss parent–offspring conflict and assignment of fit-

ness to parents and offspring [36]; but rather, we discuss

data on the statistics of social environments and the processes

that give rise to these statistics. In addition, we draw on

examples from human research more than previous work

has done. Despite our different starting points, there is

some convergence in conclusions with the work of Burgess

& Marshall [34,35].

We first discuss recent theoretical models of the evolution

of early-life effects (§2). Then, we briefly review empirical

research on environmental statistics (§3). Next, we discuss

several cases where researchers have already drawn on

knowledge about environmental statistics to inform their

explanations of plasticity, including early-life effects (§4),

and provide guidelines for future research (§5). We end

with conclusions and future directions (§6).
2. Modelling early-life effects
In the past decade, a set of formal models has emerged that

explores the optimal decisions of developmental systems

that have access to information coming from multiple

sources, such as genes, prenatal effects and postnatal experi-

ences. These models are frequently designed within the

framework of statistical decision theory [37] and include

Bayesian updating [38–43]. Optimal (i.e. evolutionarily

stable) decisions, then, are either derived analytically, com-

puted using dynamic programming methods [39,40,44,45],

or approximated using reinforcement learning methods

[46,47] or simulations [31].

Formal models of early-life effects do not assume a sensi-

tive period; rather, such a period may emerge in some

conditions as the outcome favoured by natural selection. A

model generates an early-life effect if the expected fitness of

the developmental system is maximized when early cues
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have a greater impact on phenotypic development than later

cues do (in the extreme, later cues do not affect the pheno-

type at all; i.e. a critical period). For this to be possible,

models should include at least two time periods in which

the developmental system can access cues, which have the

potential to shape phenotypic development. Until recently,

however, models of phenotypic plasticity typically assumed

a two-stage life history: organisms first sample a cue to

the environmental state, and then develop phenotypes

based on this cue, either instantaneously or after a (fixed or

flexible) time lag. In such models, organisms have no oppor-

tunity to sample cues sequentially and gradually adapt to

their environments. These models, therefore, cannot produce

developmental trajectories in plasticity over time (a precondi-

tion for sensitive periods), which may depend on experience.

Recent models have allowed for such trajectories by model-

ling development as a sequential information sampling and

decision-making process and by allowing organisms to con-

struct phenotypes incrementally. These models have led to

new insights and hypotheses about early-life effects, some

of which are obvious, and others not. A full review of these

models is beyond the scope of this paper (see [1]). Here, we

feature some key themes arising from their results.

(a) Environmental variation
The first theme is that adaptive evolution of informational

early-life effects requires stability of the fitness-relevant

environment over developmental time. When environments

are completely stable within lifetimes (yet variable across

generations, otherwise the environment is constant favouring

canalized or ‘genetically fixed’ strategies), it is adaptive to use

early-life experience as informative about the adult environ-

ment: the organism obtains information from sampling in

early life and steeply diminishing returns from continuing

to sample once it has some information. Hence, plasticity is

predicted to decline sharply with age under such scenarios

[1,48].

If the fitness-relevant environment is variable within life-

times, higher rates of within-generation environmental

change (i.e. lower temporal autocorrelation) reduce the

payoff for using early-life information to set the adult pheno-

type [15,20,22,24,26,30,31]. In such environments, more

recent cues should often be given greater weight than older

ones, favouring learning mechanisms that have the potential

to overwrite older environmental estimates, rather than irre-

versible developmental commitment [20,45,49–51]. Thus, if

early-life effects exist for environmental dimensions that

change much faster than the timescale of development for a

given species, they probably do not reflect ‘weather forecast-

ing’ about the external environment [15,26,31]. Some authors

have suggested that informational adaptations based on

early-life experience are more likely to occur in short-lived

than in long-lived organisms. For early-life effects in long-

lived species, if individuals are forecasting anything, they

might be forecasting the future capacities of their own

soma, which may have been constrained by their poor start

(an ‘internal PAR’; [18,26]).

(b) Cue reliability
A second theme is the reliability of cues about the environ-

ment. Cue reliability may appear to be the same thing as

within-generation environmental change, but the two are
not identical. If the environment is fluctuating unpredictably,

current experience is necessarily an unreliable cue of future

experience [52]. However, current experience may be a

more or less accurate indicator of the present conditions

even in a stable environment: sensory detection could be

inaccurate, and experiences are often only stochastic reflec-

tions of environmental parameters they provide information

about (e.g. there may be smoke but no fire). In some cases,

the cue experienced is different from the environmental par-

ameter that will determine fitness in adulthood: for example,

parental behaviour has been proposed as a cue to the child’s

future socio-environmental conditions [53,54]; and in utero
nutrition has been proposed as a cue to future food avail-

ability [55]. It is easy to see that these cues will be

imperfectly related to the outcomes they are supposed to

forecast.

In general, less reliable cues should often be sampled for

longer (if not ignored altogether), and given less weight, than

more reliable ones, unless unreliable cues are used as a way

of creating diversified bet-hedging within a lineage [20,25].

Thus, we may expect longer sensitive periods, and weaker

effects of a single brief input, for early-life experiences that

are only unreliable cues of a fitness-relevant parameter; and

shorter sensitive periods and larger effects for highly reliable

cues. In addition, the duration of sensitive periods will often

optimally depend not on time, but on the informational state

of the organism: an individual receiving a consistent set of

cues (e.g. all cues indicate the same level of danger) should

shut down plasticity sooner than an individual whose

experience is inconsistent [23,27].
(c) Costs of plasticity
The third theme is that, as long as there is some chance of the

environment changing or being unreliably ascertained, for

early-life effects to be advantageous, there must be some

cost to retaining complete plasticity indefinitely. Otherwise,

committing to a phenotype on the basis of early experience

is at best neutral, and more often disadvantageous, compared

to remaining uncommitted. The costs of retaining full plas-

ticity are implemented in various ways in different models.

In some cases, switching between adult phenotypic states is

assumed to have a negative effect on survival or fecundity

[20,22,56]. In others, a temporary state of maladaptation

while switching is assumed [30]. Another approach is to

stipulate that specialized adult phenotypes require incremen-

tal development, which takes time. Alternatively, earlier

integration of different components of a phenotype is

assumed to increase their coordination and efficiency [57],

providing a benefit to committing to early [23,27]. Without

these costs or constraints, an optimal organism would be a

Darwinian demon: infinitely plastic throughout its life.

Thus, although informational accounts of early-life effects

are adaptive accounts, they also contain an element of con-

straint in their reasoning: early-life cues are given such

weight because it is costly or impossible to remain completely

plastic through all life stages [58].

In summary, the formal models suggest that in assessing

whether an early-life effect is likely to result from adaptive

use of information, we need considerable knowledge about

the statistical structures of environments. It matters how

reliable the putative cue is; and it matters to what extent

the present is a good guide to future conditions. These
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within-generation principles converge with those from ana-

lyses of the between-generation environmental statistics that

favour the evolution of anticipatory parental effects [34–

36,52]. The theoretical work challenges researchers to be

more specific about exactly which cues they assume develop-

ing organisms to be using, what it is that those cues are

indicating, and why conditions in the present carry infor-

mation about conditions in the future. In particular, the

current formal models generate a need to gather empirical

data on the statistical structures of different dimensions of

environments over the life course, to test claims about adap-

tive early-life effects for a particular species, cue and

environmental parameter. This kind of work has only

recently begun in the study of early-life effects. However,

there are several other literatures also interested in the statisti-

cal structure of environments that we can turn to. The rest of

the paper is devoted to empirical work on the statistics of

environments over the life course: what has already been

done, what needs to be done and how it can be done.
 B
374:20180110
3. Research on environmental statistics
The models reviewed in §2 show that such parameters as cue

reliability and environmental autocorrelation are essential in

shaping early-life effects. We now survey three bodies of

research that estimate environmental statistics over evolution-

ary and developmental timescales: fluctuations in population

size, density and composition; intergenerational transmission

of resources; and lived individual experiences. Note that

these statistics are concerned with the social environment in

particular. We argue that the social environment may be par-

ticularly relevant to the evolution of early-life effects, because

it is likely to have the prerequisite properties of variability

over evolutionary time, but considerable stability over devel-

opmental time. There are also substantial bodies of work on

quantifying spatio-temporal variation in non-social ecological

parameters such as temperature and rainfall. This work

emphasizes, just as we do, the fundamental role that tem-

poral and spatial scale plays in shaping the course of

adaptive evolution [59–62]. As this work has been reviewed

in detail elsewhere [34,35], we restrict ourselves to a brief

recap of the ways in which environmental statistics are quan-

tified in ecology, before turning to research on social

parameters.

(a) Recap: quantifying environmental statistics
An essential statistic is the autocorrelation parameter in

environmental time series. Its mean, variance and stability

determine the correlation pattern in a time series. This pattern

is described as having different ‘colours’. ‘White’ noise has no

temporal autocorrelation: the environmental states at any two

points in time are independent of each other [63,64]. When

environmental states are positively correlated, noise is

described as pink, brown or black, depending on the

degree of autocorrelation. In modelling a time series, the par-

ameter r captures the relative importance of the value in a

time period for determining the value in the next time

period. The colour of environmental noise is closely con-

nected with the timescale we consider [65]. The relevant

timescale depends on the life cycle of the species [64]. For

instance, an environment with moderately positive autocorre-

lation over months will act as white noise over millions of
years [66]. Autocorrelation over months is relevant to the

genetic adaptation of short-lived animals (e.g. house flies),

because this window includes several generations. For

longer-lived animals (e.g. elephants), however, months are

a mere blip in developmental time. Even if elephants respond

to short-term autocorrelation when foraging, they would be

unlikely to use it to irreversibly canalize any aspect of their

development.

Analyses of environmental time series have shown that

marine habitats tend to show higher positive autocorrelation

than terrestrial habitats [67], and coastal habitats tend to fall

in between [68]. Climatic variables also tend to show positive

autocorrelation, with temperature showing higher positive

autocorrelation than precipitation [68]. An inverse power

law, 1/fb, approximates the spectral densities of environ-

mental time series, where b ¼ 0 yields white noise, b ¼ 1

pink noise, b ¼ 2 brown noise and b , 0 blue noise [64,68].

In the power law function, 1/fb, parameter estimates are typi-

cally in the range 1 , b , 2 for marine habitats, 0.5 , b , 1

for terrestrial habitats and b ffi 1 for coastal habitats [69].

This means that on average, marine animals are better able

to predict the external conditions they will face in adulthood,

based on early-life conditions, than terrestrial animals

are. And also, land dwellers are better able to predict

temperature later in life than precipitation.

Formal models of early-life effects often assume a first-

order autoregressive environmental process, in which the

‘memory’ of the environment extends only to the previous

time period (the ‘Markov property’: you need only a single

value in order to make a forecast of the future), with no possi-

bility for delayed effects (e.g. rainfall affecting current soil

condition that determines future germination rates). This

results in exponential decay of predictive value over time,

where the correlation time tau, which equals 1/ln(1/r), is

the time it takes the system to ‘forget’ its initial condition

(i.e. the initial condition has no better predictive value than

a number drawn randomly from a Gaussian random vari-

able). Future models should explore the evolution of

developmental systems under more realistic noise structures,

including second- and third-order autoregressive environ-

mental processes, which follow the less sharply declining

power law distribution that is characteristic of natural time

series [69–72].
(b) Population size, density and composition
Fitness depends not only on abiotic conditions, but also on

population parameters, such as population size and density.

Statistical analyses of hundreds of species across many taxo-

nomic groups and geographical locations indicate that, like

abiotic variables, temporal fluctuations in population abun-

dance show reddened spectra, i.e. positive autocorrelation.

However, unlike in abiotic conditions, these fluctuations

show little difference between marine and terrestrial species

[73,74]. For 92% of species, the spectral exponents were in

the range of 0 , b , 2, with an overall mean of 1.02 (pink

noise). Hence, ‘the spectra of population data seem to be con-

siderably redder (with exponents of 0.8–1.2) than those of

environmental variables’ [74, p. 1044], which have values

closer to 0.5 [75]. Thus, organisms may be better able to pre-

dict the future abundance of their population, based on their

early-life conditions, than their future abiotic conditions.

Nonetheless, for both abiotic and population parameters,
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positive autocorrelation is low enough to amount to white

noise over timescales of years or decades [73,74].

Fluctuations in population abundance also show that

larger body size, which is associated with longer generation

time [76], predicts redder spectra, i.e. higher positive autocor-

relation [73,74]. Larger-bodied species may thus be better

able to predict population abundance on an annual scale

than smaller-bodied species. However, this predictive advan-

tage may well be offset by the fact that the gap between early

life and adulthood will be longer for larger-bodied species.

So, larger-bodied species may be unlikely to evolve early-

life effects tailored to future ecological conditions (low bs)

and to future population abundance (higher bs, but probably

not high enough to offset their longer lifespan). Instead, we

consider it more likely that larger-bodied species tailor their

development to their internal expected future somatic

decline, i.e. an internal PAR [18,26]. Irrespective of body

size, the fact that autocorrelation tends to be higher in popu-

lation variables than environmental variables suggests that

researchers should consider population dynamics as selection

pressures in the evolution of early-life effects.
20180110
(c) Intergenerational transmission of resources
Sociologists, economists and anthropologists have a long-

standing interest in intergenerational mobility, i.e. the

extent to which social and material capital (i.e. resources) is

correlated across generations. If this correlation is 1, parents’

resources perfectly forecast their children’s. If it is 0, each gen-

eration is born anew. Income data across countries over the

past centuries indicate a correlation that ranges between

0.15 and 0.65, suggesting that inheritance explains only 2–

40% of the variation from one generation to the next [77]. If

this were the whole story, we may expect social and material

advantages to be erased within three to five generations.

However, wealth may actually be more persistent than two-

generation estimates suggest, with some scholars estimating

correlations in the range 0.70–0.75 over five generations

[77,78]. Wealth is predicted by grandparental wealth, even

after controlling for parental wealth. There is controversy

over the processes that explain this second-order autocorrela-

tion process [77,78]. We limit ourselves here to the

observation that at least in modern societies, wealth is pre-

dictable over several generations, despite much noise from

one generation to the next. We discuss the stability of

wealth within lifetimes in §4.

Does this observation generalize across human cultures?

Borgerhoff Mulder et al. [79] studied 21 historical and con-

temporary populations characterized by diverse economic

systems: hunter–gatherers, horticulturalists, pastoralists and

agriculturalists. They also examined three types of wealth:

material, embodied and relational. Their findings show that

wealth persistence varies by economic system. Specifically,

‘intergenerational transmission of wealth and wealth in-

equality are substantial among pastoral and small-scale

agricultural societies (on a par with or even exceeding the

most unequal modern industrial economies), but are limited

among horticultural and foraging peoples (equivalent to the

most egalitarian of modern industrial populations)’ [79,

p. 682]. These differences may exist because material wealth

is more often transmitted in pastoralist and agricultural

societies than it is in horticultural and foraging societies.

This cross-cultural study used two-generation estimates.
Longer-term autocorrelations may be higher than one

would expect based on these estimates [77].

In summary, it appears that in all human societies, wealth

is heritable to some extent, but this extent is quite variable.

Stable multigenerational differences in family status exist in

some other primates, such as baboons, as well [80]. Therefore,

in some long-lived primates, the persistence of social and

material capital may have been stable enough over a few gen-

erations to predict individuals’ adult experiences based on

their childhood social positions, although only to a limited

extent. Such predictions may be more likely to have shaped

our species’ developmental systems than predictions about

ecological and population variables, which appear to be

even more unpredictable. Current research, however, focuses

on the dynamics of either ecological or social variables in iso-

lation. Future work could explore how the statistics of non-
social environments might affect the evolution of social struc-

ture; as is suggested, for instance, by the observation that bird

species that inhabit more unpredictable environments

(characterized by higher among-year variability in precipi-

tation) are more likely to breed cooperatively, potentially as

a strategy to buffer against risk [81].
(d) Lived individual experiences
Researchers have also quantified environmental statistics

over short timescales, capturing a segment of an individual’s

lifespan in great detail. Biologists, for instance, have used

wearable devices (typically, animal-borne cameras) to register

the visual experiences of animals in natural habitats [82–84].

They have also used isotopic signatures of tissues, which inte-

grate diet over the period in which these tissues were

synthesized, to uncover parameters of animals’ diets (and,

by extension, of their ecology) over different timescales. For

instance, in fur seals, plasma, red blood cells and whiskers

integrate diet over the last few days, weeks and years,

respectively [85]. The turnover rates of various proteins in tis-

sues thus reveal the spatial and temporal stability of feeding

ecologies, which shape the costs and benefits of early-life

effects.

Psychologists have equipped infants with wearable

devices, such as headcams or language recorders, in order to

document their experiences during unconstrained everyday

activities (e.g. [86–88]. This work emphasizes that experience

is selective (depends on location and focus), state-dependent

and variable between individuals. Smith et al. [89] distinguish

between three spatial scales. The third-person view captures

the potential environment, i.e. all perceivable aspects of the

environment (in ‘viewshed analysis’ in ecology, this is referred

to as the potential visual space [90]). The first-person view
captures the available environment, i.e. the scene in front of

an agent’s sensory organ, which depends on the agent’s

current location, size, posture, activity, and so on. Fixations,

often measured using eye-tracking, capture focus within the

available environment [91].

Data at each spatial scale are relevant to formal models of

early-life effects. The potential environment determines the

extent to which individuals could have different experiences.

For instance, more complex environments offer greater scope

for variation in experience between individuals. The available

environment affects what experiences different individuals

are likely to have. For instance, smaller individuals may be

less successful at detecting food, or be more frequently
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challenged by dominant conspecifics, and therefore experi-

ence harsher conditions than larger individuals, resulting in

developmental differences (e.g. reduced ability to invest in

plasticity). Fixations select what information enters the

mind for further processing, which influences estimates

about the environment, which may shape development.

High-precision data obtained using wearable devices

have the potential to be informative about cue reliability as

well as environmental autocorrelation. For instance, in

harsher environments, parents tend to have less time and

fewer resources available to invest in their offspring [92].

From the child’s perspective, therefore, parents may be less

responsive to their needs, show anger more frequently, and

so on. Wearable devices can be used to examine the differen-

tial frequencies of these experiences in different environmental

conditions (e.g. as a function of objective measures of local

morbidity–mortality rates). To do this, data over short time-

scales are informative, as long as the data are collected

across a variety of environmental conditions. To quantify auto-

correlation of experiences, however, we need data collected

over timescales longer than those typical in current studies

using wearable devices. We look forward to future studies

that measure the lived experiences of animals over their

entire juvenile periods, or even longer, as these will provide

a rich source of information relevant to formal models of

early-life effects.

To summarize §3, there are already bodies of literature

dealing with the statistical properties of environments.

These suggest that some environmental parameters (demo-

graphic and social) may show greater stability over a

lifetime than others (e.g. rainfall), and moreover that adaptive

early-life effects may be more likely to evolve in some kinds of

environments (marine) than others (terrestrial). In the case of

early-life effects in long-lived organisms, such as humans,

claims about whether sufficient temporal stability exists

for organisms to use early life as a forecast have proved con-

tentious [15–19]. This section has challenged those who

advocate such claims to specify which parameters of the

environment they assume organisms to be adapting to, and

show that these parameters do have the right kind of temporal

stability. Similarly, when researchers make claims that some

experience (e.g. parental behaviour) is a cue of some environ-

mental parameter (e.g. harshness), they need to refer to data

from which the reliability of such a cueing relationship can

be computed. In short, researchers need to specify and justify

the assumed linkages in terms of the roadmap for the evol-

ution of adaptive early-life effects shown in figure 1.

In fact, the situation may be even more complex than

figure 1 implies. For many social parameters (e.g. relative

strength), the social environment may respond dynamically

to the phenotype that the focal individual adopts. For

instance, an animal who competes successfully over resources

may develop a larger body, increasing the probability that

conspecifics will defer in future conflicts, with potential

associated gains in social status. Or, an animal who success-

fully manipulates the information used by conspecifics to

guide their behaviour may achieve relatively high fitness,

increasing the proportion of skilled mind-readers in future

generations [93]. The social strategies of animals thus co-

determine the statistics of their own social environment, not

only because they actively select certain habitats or events

(e.g. to enter a conflict or not)—that happens with non-

social strategies, too (e.g. a bold forager may explore new
terrain)—but rather, because the statistics of social environ-

ments respond to the phenotype of the focal individual.

This kind of feedback is pervasive in the social world.

Although there are, of course, extensive game-theoretic litera-

tures on social dynamics, both within and between

generations, exploring winner–loser effects (e.g. [94]), repro-

ductive skew and cueing for mating opportunities (e.g. [95]),

honesty and deceit in communication (e.g. [96]), and the coe-

volution of local relatedness and helping behaviour (e.g.

[97]), this type of model does not focus on the statistics of

social environments and the processes that generate these

statistics. Future modelling should explore this further, draw-

ing on, and informing, empirical research on animal societies;

for instance, by drawing on parameter values inferred from

studies of the stability of social indices, such as rank or

mate value, within and between generations. Such work

could support or falsify our speculation, based on the data

on population parameters and studies of primates, that

social parameters show greater temporal autocorrelation

than non-social ones.

4. Applications of longitudinal data
There are several cases where researchers have already used

environmental statistics to refine their explanations for

observed patterns of plasticity, including early-life effects.

This is generally only possible in field studies with rich longi-

tudinal datasets. For example, in their study of roe deer,

Douhard et al. [98] examined the extent to which environ-

mental conditions in an individual’s first year of life

predicted those in their breeding years. They found that

early-life conditions had substantial predictive power in one

of their field sites, but essentially none in the other. Thus,

to the extent these sites were representative of the environ-

ments to which roe deer are adapted, it seems unlikely that

the deer would have evolved to use their early experience

to calibrate their phenotypic strategies. Indeed, the research-

ers found no evidence that they did. Unlike Costantini

et al.’s [13] study of zebra finches, deer exposed to poor

early conditions did not fare better if conditions were also

poor in adulthood; this ‘match–mismatch’ pattern is often

seen as a key prediction of external PAR hypotheses about

early-life effects (see below).

In a longitudinal study of Assamese macaques, Berghänel

et al. [99] studied environmental statistics relevant to both cue

reliability and temporal autocorrelation. They showed that

maternal stress hormone levels covaried with current environ-

mental conditions; hence, maternal stress hormones are a cue

to current conditions that the developing fetus could use.

However, the researchers also found essentially no temporal

autocorrelation in environmental parameters such as rainfall

or food abundance. Thus, environmental conditions in early

life could not provide information about these aspects of the

environment in adulthood. The researchers did find that

maternal stress hormone exposure caused accelerated

growth at the expense of skill acquisition and immune func-

tion, suggesting that the monkeys responded potentially

adaptively to early conditions. However, given the lack of

temporal autocorrelation, this cannot have been because

they were using maternal stress hormones as a cue to future

rainfall or food abundance. Thus, either maternal stress hor-

mones provide information about some other, unmeasured

environmental parameter, or the developing monkeys were
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responding adaptively to their own constrained phenotype,

i.e. an internal PAR [18,26]; or, there may be no adaptive

reason directly related to the environment.

For humans, it has been argued that environmental stab-

ility as measured by, for example, climatic or food abundance

variables, is unlikely to be sufficient to support the evolution

of informational early-life effects [15,19]. However, we

suggested in §3 that social parameters might show greater

temporal autocorrelation than non-social ones. Nettle &

Bateson [100] examined the extent to which socioeconomic

conditions in childhood predicted those that will be experi-

enced in adulthood in British women. In line with other

findings from affluent societies, they found considerable per-

sistence of socioeconomic position (correlations between the

childhood and adult measures of around 0.35). However,

they found no evidence of the ‘match–mismatch’ pattern

that would be predicted if people could use low childhood

socioeconomic position as information and develop an adap-

tive phenotype to cope with low socioeconomic position in

adulthood. Instead, they found that low adult socioeconomic

position was even more negative for health if individuals had

also experienced low childhood socioeconomic position. This

suggests that ‘silver spoon’ effects, whereby good early con-

ditions allow greater overall robustness, dominate over

informational adaptation in this instance (see [101,102] for

similar patterns in other societies). That said, individuals

who grow up in unfavourable circumstances might still be

making ‘the best of a bad job’ [9,16], i.e. their fitness out-

comes may be better than those of individuals growing up

in the same conditions who do not show the same responses

as they do. This comparison is challenging to study,
especially in wild populations, as it requires somehow block-

ing the set of responses that animals would normally

mobilize in high-adversity contexts.

Just as field datasets can provide evidence on temporal

autocorrelation of environmental parameters, they can be

used to examine the cues available to developing organisms.

Godoy et al. [103] used rich observational data from white-

faced capuchins to explore the extent to which developing

individuals might have access to valid cues of relatedness.

They found that the combination of spatial proximity and

high status was highly informative about which individuals

were their fathers; and spatial proximity and age similarity

were strong cues of patrilineal sibship. Thus, early-life adap-

tations in social or reproductive behaviour contingent on

relatedness would be able to make use of these cues. Whether

the monkeys do use them was not explored in that particular

study. In a different study, however, Godoy et al. [104] were

able to demonstrate that capuchin monkeys avoid mating

with close kin, both at the parent–offspring and half sibling

level, and moreover, provided evidence of fitness costs to

inbreeding in those cases where it did occur (i.e. delayed

age of first reproduction). Furthermore, in humans, it is

known that individuals use early-life association with the

same female caregiver as a cue of relatedness, probably for

purposes of inbreeding avoidance in adulthood [105].

To summarize §4, field researchers have begun to assem-

ble and report environmental statistics relevant to testing

accounts of early-life effects. These datasets shed light both

on issues of cue reliability and availability, and temporal

stability. We argue that more data of this kind are required,

comparing across different environmental parameters,
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different environments and different species. Ideally, mul-

tiple replicate datasets are needed, which can be compared

and integrated. For an external PAR to evolve, an informa-

tional relationship needs to exist not just fleetingly or at

some sites, but enduringly, on average, over evolutionary

timescales [58].
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5. Guidelines for new data collection
In a recent survey of the current state of understanding of

spatial and temporal variation in ecology, notable gaps in

knowledge were highlighted [60]. It is particularly eye-catch-

ing that there are substantial gaps in observational datasets at

the finest scales of variation (daily to sub-daily timescales

and greater than 1 m2 to 100 ha spatial scales) that are the

most relevant to individual organisms. Nevertheless, given

recent technological advances (in wearable tech, remote sen-

sing capabilities, etc.), there are significant opportunities to

access the real-world experiences of individuals (both

humans and non-human) as they go about their daily lives.

Such access should not just be limited to the visual domain

as environmental inputs to key developmental processes

and systems come in a variety of forms, encompassing all

of the ways that a developing organism can be influenced

by its environment. Moreover, many non-human animals

prioritize non-visual sensory modalities (e.g. most mammals

rely on chemosensing more than they do on vision).

For the reasons outlined above, the ecological and evol-

utionary relevance of the timescales over which statistical

variation is quantified must be considered carefully. Key to

this will be the generation time of the focal organism. But it

will also be important to consider the spatial scale or coarse-

ness of the patchiness in key features of the socio-ecology of

the organisms under consideration. For instance, exactly the

same environment can be perceived as more or less variable,

and any variation more or less stochastic (unpredictable), by

organisms of different sizes. Indeed, variation in resource use

patterns driven by perceptual scale differences can facilitate

the coexistence of species in different size classes on very

narrow niches (e.g. single resource types; [106]). Therefore,

it will be important to design sampling protocols to the

species in question. Furthermore, this issue will limit the

value of many of the existing datasets discussed above as

they have been collected to be as generally representative as

possible, or for other purposes. Finally, the data demands

of a full-scale attempt to document the relevant environ-

mental statistics for even a few model species will not be

trivial. There will be an increasing need for repositories for

open sharing of sensor (e.g. video and sound) files and

associated metadata [107]. Moreover, there are likely to be

limitations to existing statistical techniques to be overcome,

particularly from a spatial perspective. Spatial statistical tech-

niques are notoriously more challenging than their equivalent

non-spatial counterparts because spatial data are often sub-

ject to severe statistical constraints (e.g. fundamental scale

dependency and pervasive autocorrelation; [108]).
6. Conclusion and future directions
We hope our paper will strengthen the bridge between

formal modelling of early-life effects and empirical research

on environmental statistics. We have invited theoreticians to
be more explicit about how environmental statistics should

be measured to evaluate competing explanations of early-

life effects, and to consider building more realistic noise

structures into their formal models. Conversely, we have

invited empiricists to quantify the environmental statistics

suggested by formal models to be important in shaping

early-life effects, such as cue reliability and temporal autocor-

relation in non-social and social environments, both within

and between generations.

Building formal models that incorporate realistic noise

structures will be challenging, and even more so would it

be to collect, process and analyse rich longitudinal data

extending over years or even decades. However, this is feas-

ible if researchers are able to draw on innovative and efficient

technologies (e.g. smaller wearable devices with greater sto-

rage space and experience-sampling tools). Crucially, rich

longitudinal datasets can be used not solely for the purpose

of studying early-life effects, but rather for a wide variety

of purposes. For instance, video recordings of the visual

inputs available to infants provide not only information

about the distributions of objects and faces they perceive

(the main focus of these studies), but also about the level

of contingency of caregiver’s responses to their infants.

If such recordings are made repeatedly over the juvenile life

stage, and at least once in adulthood, we can estimate

social environmental statistics, such as the central tendency

over time (i.e. slope), variance and stability in caregiving

sensitivity, and use these statistics to evaluate competing

explanations of early-life effects, including individual

differences therein.

So far, we have assumed that environmental dimensions

have isolated effects on traits, when, of course, they might

interact (e.g. optimal adaptation to temperature may

depend on the level of rainfall). Formal evolutionary model-

ling shows that if a trait depends on multiple dimensions of

the environment [109], or on multiple maternal characters

[24], optimal reaction norms may differ from their univariate

equivalents. For instance, if one maternal trait endures a more

predictable form of fluctuating selection than another, this

character is likely to disproportionally affect other offspring

characters that are adapting to less predictable (noisier) selec-

tion, because it provides more information about future

conditions [24]. These models, therefore, suggest a need for

datasets that simultaneously represent multivariate environ-

ments and multivariate phenotypes over time. For the

study of early-life effects, within generations, datasets

should include multiple measurements over ontogeny and

at least one measurement in adulthood. As we noted in §4,

certain longitudinal datasets already include this infor-

mation. We are eager to see such datasets used to

parameterize, and test, formal theory.

As in other areas of biology, there is scope for better inte-

gration of function and mechanism in the study of early-life

effects [110–111]. We have focused on formal modelling

and environmental statistics. We have ignored how organ-

isms actually process information and use it to generate

actions. As noted in §2, formal models of early-life effects

often include Bayesian updating [38–43]. Although this fea-

ture does not require that organisms are processing

information in a Bayesian manner, it does imply that organ-

isms keep track of environmental cues and respond to them

as a Bayesian animal would. This assumption can be ques-

tioned on several grounds; here we focus on one.
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Higginson et al. recently showed that ‘animals can achieve a

similar level of performance to Bayesians using much simpler

mechanisms based on their physiological state’ [112, p. 1],

such as energy reserves, which are correlated with fitness-

relevant statistics of the environment. Keeping track of the

environment takes time and effort, and is presumably costlier

than using internal states as a source of information about

environmental conditions. When simple ‘rules of thumb’, or

heuristics, can achieve high levels of performance, they

might well be favoured over strategies that require extensive

sampling of multivariate environments. We look forward to

future modelling that explores what simple rules of thumb

could be favoured in realistically complex environments

and thus makes predictions about which kinds of environ-

mental manipulations will produce large plastic responses

and which will not.

Finally, it could be helpful if theoreticians and empiricists

use similar labels, metrics and graphical representations to

describe, quantify and depict environmental statistics. Right

now, for instance, empirical articles often show the corre-

lation between trait values and environmental variables at

different time points, without reporting the autocorrelation

coefficients of the environmental variables themselves,

which could be imported into formal models. Consistency

will make comparing and integrating among formal models

and datasets easier and therefore more likely to occur. We

may imagine an ‘encyclopedia of environmental statistics’

that details distributions of environmental autocorrelation,
and cue reliabilities, over different timescales, documented

across different species and within species across habitats,

all presented in a standardized format; ideally, accompanied

by the raw data. Such an encyclopedia would build on scho-

larly articles on environmental statistics, but it would have a

broader focus; it would integrate these articles into a larger

whole. Such a unified overview would offer a scaffold for

new insights into the evolutionary pressures and physiologi-

cal mechanisms that produce early-life effects, setting priors

for species or habitats yet to be measured. This encyclopedia

would be a valuable resource, continuously updated, helping

researchers to discover patterns in a currently mysterious

smorgasbord of variation in early-life effects between differ-

ent species, between individuals within populations, and

between different developmental systems within individuals.
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