
Trends
Bayesian models of development offer
a simple and tractable way to model
how information from ancestors (e.g.,
via genes or parental effects) combines
with information from a series of per-
sonal experiences over the lifetime to
affect the development of phenotypic
traits.

Bayesian models show how indivi-
duals’ naive prior distributions and
subsequent cue exposures limit devel-
opmental plasticity and generate indi-
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rate Bayesian updating to study the evolution of developmental plasticity and
developmental trajectories. Here, we describe the merits of a Bayesian
approach to development, review the main findings and implications of the
current set of models, and describe predictions that can be tested using pro-
tocols already used by empiricists. We suggest that a Bayesian perspective
affords a simple and tractable way to conceptualize, explain, and predict how
information combines across the lifetime to affect development.
vidual differences in plasticity.
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predictions about developmental plas-
ticity and developmental trajectories,
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plasticity, Bayesian models predict that
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mal developmental decisions based on
the information that is available to them.
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Why A Bayesian Framework for Development?
A basic premise in biology is that the phenotype of an organism is, at least to some extent, based
on its estimates of variables in the external environment [1,2]. Theory suggests that information
about the external environment can come from the genes of an organism [3,4], parental effects
[5,6], and the many types of personal experience that can occur over the course of a lifetime. The
question, then, is how information from all of these sources combines across ontogeny to affect
the development of phenotypic traits.

Over the past few years, investigators have begun to address this question, using models that
incorporate Bayesian updating to study the evolution of developmental plasticity and devel-
opmental trajectories (see Glossary) [7–12]. These models are based on the assumptions that
Bayes’ theorem provides the most logically consistent way to combine probabilistic information
from different sources at different times [13–15], and that one can model an individual's current
assessment of conditions in the external environment (‘the state of theworld’) using a probability
distribution (Box 1). Themodels assume that[2_TD$DIFF] evenbefore individuals havebeenpersonally exposed
to any cues from the environment, they already have ‘naive’ prior distributions, based on
information from their distant ancestors (e.g., via genes) and from their immediate ancestors (e.
g., via parental effects or inherited epigenetic factors). These naive prior distributions are then
updatedas individuals are exposed toa seriesofpotentially informative cuesover thecourseof their
lives, yielding a series of posterior distributions. The models readily accommodate situations in
which individuals are repeatedly exposed to the same cues or are exposed to different cues across
ontogeny. Finally, the models assume that the phenotypic traits expressed by individuals are
affected by their assessments of the state of the world, as reflected by their posterior distributions.
Thus, Bayesian models offer a way to make predictions about the developmental trajectories of
different individuals and the developmental plasticity of individuals with different genotypes as a
function of their naive priors and the series of cues to which they were exposed across their lives.

Although Bayesian models provide a ‘benchmark’ for information updating against which
observations can be compared, this does not imply that organisms necessarily compute full
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Glossary
DE: the difference between E for the
prior and E for the posterior as a
result of exposure to a given cue.
Confidence: an individual's level of
confidence (degree of belief) in its
current estimate of the state, E. In
two-state models, confidence is
determined by the value of p: lowest
for p = 0.5, and highest for p = 0 or
p = 1. In continuous models,
confidence can be represented by
the variance of the prior or the
posterior.
Cue: a stimulus, experience, or event
that can provide information about
the ‘state of the world’.
Cue reliability: the extent to which a
given cue is differentially associated
with all of the possible states of the
world. A perfectly reliable cue would
only occur for one state of the world;
a very unreliable cue would be nearly
equally likely to occur for every
possible state of the world.
Developmental plasticity: the
effects of stimuli, cues or experiences
in the past on the current phenotype.
Learning is often viewed as a special
case of developmental plasticity
[59,60].
Developmental trajectory: a
description of how the values of a
given phenotypic trait change within a
given individual as a function of age
or time. Developmental trajectories
are investigated using within-
individual experimental designs [61].
E: a point estimate of an individual's
prior or posterior distribution. In two-
state Bayesian models of
development, E is the probability of
one of the two states, p. In
continuous Bayesian models of
development, E can be represented
by the mean of the prior or the
posterior distribution.
Intragenotypic variability (IGV):
interindividual variation in the
phenotypes expressed at a given age
by individuals with the same
genotype, reared under the same
conditions prior to measurement.
Likelihood: a distribution specifying
the conditional probability that a
given cue will occur, given each of
the possible states of the world.
Posterior: a distribution specifying
an individual's assessment of the
probability of all possible states of the
world after exposure to a given cue.
Potential developmental plasticity:
the ability of an individual or genotype
to generate a wide range of

Box 1. Bayesian Basics for Models of Development

A prior distribution (‘prior’) specifies an individual's assessment of the probability of all possible states of the world before
[6_TD$DIFF]it [7_TD$DIFF]is exposed to a given cue. Bayesian models of development assume that individuals begin life with a naive prior, based
on information from their genes and parental effects. For instance, if there are only two possible habitats, an individual
might initially assess, based on information from its ancestors, that it is more likely to be in habitat A (p = 0.7) than in
habitat B (1–p = 0.3).

A cue is a stimulus, experience, or event that can provide information about the state of the world. A likelihood function
(‘likelihood’) specifies the conditional probability that a given cue will occur, given each of the possible states of the world.
The likelihood determines the reliability of a cue, where reliability indicates the extent to which a given cue is differentially
associated with different states of the world. For instance, a cue, C, would provide amoderately reliable indication that the
habitat was A if p(CjA) = 0.7 and p(CjB) = 0.2. Bayesian models of development typically assume that organisms ‘know’
the likelihoods of naturally occurring cues rather than learning them, because relations between those cues and states of
the world have been a recurrent feature of their evolutionary environments.

A prior is updated based on exposure to a given likelihood, yielding a posterior distribution (a ‘posterior’), where the
posterior provides a new assessment of the state of the world, conditional on exposure to the cue. Formally, this is
accomplished using Bayes’ theorem, followed by normalization to ensure that the probabilities of all possible states add
up to 1. ‘E’ refers to an individual's point estimate of the state at a given time, and ‘DE’ refers to the difference in an
individual's estimate of the state before and after exposure to a cue. If there are only two states, E is indicated by p, and
DE by the difference between the p values of the prior and the posterior. If states are continuously distributed, the means
of the prior and the posterior can provide useful estimates of E, in which case DE is indicated by the difference between
those two means.

The posterior for one cue becomes the prior for the next cue, which allows Bayesian models to predict how E would
change across ontogeny, in response to exposure to cues from different sources and at different times.
Bayesian solutions. Instead, organisms might use heuristics or rules of thumb that approximate
‘optimal’ Bayesian solutions under natural conditions, but which are computationally simpler or
less expensive (e.g., [14–17]).

Here, we characterize the diverse array of recent models of Bayesian development, and describe
what these models tell us about the ways that cue reliability and prior distributions affect an
individual's estimates of the state of the world over ontogeny. We outline specific testable
predictions generated by these models, and highlight their general prediction that limited
developmental plasticity and individual differences in plasticity will be widespread, even [13_TD$DIFF]in
the absence of any costs of plasticity. Finally, we describe outstanding problems in development
that might profit from a Bayesian perspective.

Variation among Bayesian Models of Development
Although Bayesian models of development are based on shared assumptions (Box 1), they also
differ in important ways. Two-state models assume that all possible states of the world fall into
two discrete categories (e.g., high food versus low food) [7,8,11,12], whereas continuous
models assume that many possible states vary continuously between minimum and maximum
possible values (e.g., the level of danger) [9,10]. Two-state models are analytically simpler and
more tractable, and provide a useful first approximation of the patterns expected under Bayesian
updating. Continuous models allow for greater biological realism, and provide a way to examine
how themeans and the variances of priors separately contribute to Bayesian updating (Figure 1).
All of the models assume that offspring can develop in different environments than their parents;
if this were not the case, one would not expect plasticity or information updating to evolve
[18,19]. However, most of the current crop of models [14_TD$DIFF]assume that the environment is stable
within an individual's lifetime [7,9,11,12]. The sole exception [8] assumes that the state of the
world can change within generations and that, in response, organisms have evolved mecha-
nisms that devalue information obtained earlier in ontogeny. This latter model is comparable to
many learning models, which routinely assume that environmental conditions change within
generations, and that animals have evolved mechanisms that allow them to detect and respond
to such changes (e.g., [20,21]). Most of the current models assume that every individual in a
2 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy
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phenotypes in response to cues with
a wide range of likelihoods.
Prior: a distribution specifying an
individual's assessment of the
probability of all possible states of the
world before exposure to a given
cue.
Realized developmental plasticity:
the extent to which the phenotype of
an individual or a genotype changes
as a result of past exposure to a
particular cue or set of cues.
Empiricists typically study realized
developmental plasticity using
replicate-individual experimental
designs (Box 2, main text).
Replicate-individual design: an
experimental design for measuring
developmental plasticity in which
individuals with the same genotype
are exposed to two or more different
cues. For each genotype, differences
between the mean trait values
expressed by the different treatment
groups at the end of an exposure
period provide an index of the
developmental plasticity of that
genotype in response to those cues.
State of the world: the value of a
variable in the external environment.
In two-state models, there are only
two possible states (e.g., two
different habitats); in continuous
models, there is a range of possible
states (e.g., different levels of
danger).
Within-individual design: an
experimental design for measuring
individual differences in
developmental trajectories. Different
individuals are exposed to the same
cues over the same period of time,
and changes in their trait values
across ontogeny are used to
describe their developmental patterns
in response to those cues.
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Figure 1. The Effects of The Means and Variances of Prior Distributions on Bayesian Updating in A
Continuous Model, in which The State of The World (e.g., The Level of Danger) Can Take On Any Value
between 0 and 1. Each distribution (the prior distribution, the likelihood function, and the posterior distribution) indicates
the probability of each of the possible values of the state. Individuals with three different prior distributions (blue lines) are
exposed to the same cue, with a likelihood function (red lines) that indicates that low values of the state are more likely than
high values of the state. (A) and (B) illustrate the ‘discrepancy rule’. In (A) and (B), the priors have different means but the
same variance. In (A), the prior distribution and the likelihood function have very different means, resulting in a posterior
(green line) displaced to the left of the prior. In (B), the prior and the likelihood have similar means, resulting in a posterior
similar to the prior. (A) and (C) illustrate the effects of the confidence of the prior on updating. Here, the priors have the same
mean, but the variance of the prior is higher in (A) than in (C). In (A), the confidence of the prior is relatively low, so exposure to
the cue results in a posterior displaced to the left of the prior. In (C), the confidence of the prior is relatively high, so exposure
to the same cue results in a posterior similar to the prior. As a result of these differences, DE (i.e., the difference between the
mean of the prior and the mean of the posterior) is higher in (A) than in (B) or (C).
population begins life with the same naive prior, but somemodels do not [9,10]. The assumption
that every individual in a population has the same naive prior facilitates study of the evolution of
the optimal developmental program for organisms with that prior, whereas the assumption that
individuals begin life with different naive priors allows for analyses of the developmental trajec-
tories expected when organisms with different naive priors are exposed to the same cues.
Finally, some models assume that different individuals can be exposed to the same cues for the
same period of time [9,10], while others assume that exposure to cues varies stochastically
across individuals at the same place and time (e.g., [7,8]). The former assumption is more
applicable to controlled experiments in the laboratory, while the latter is more applicable to
development in the field, where cue exposures can vary widely, even among individuals living
near one another. For instance, in fluvial habitats, the chaotic effects of turbulence result in
unpredictable spatial and temporal variation in the frequency, intensity, and duration of expo-
sures to the same chemical cues [22].

Factors Affecting Bayesian Updating
Here, we use ‘E’ to refer to an individual's current point estimate of the state of the world, and
‘DE’ to indicate the difference between the prior and the posterior as a result of exposure to a
given cue, stimulus, or experience (Box 1). DE provides the foundation for any Bayesian model of
development [2,15], which share the assumption that changes in E encourage changes in
phenotype. Of course, many factors besides DE can also affect trait development, including the
benefits and costs of being phenotypically matched or mismatched to the state of the world, the
extent to which trait development is reversible, lags between DE and change in phenotype, costs
of sampling, or costs of switching between different phenotypes. However, none of these factors
is unique to Bayesian models, and assumptions about them vary across both Bayesian and
nonBayesian models of development. Hence, here we focus on the factors that affect DE.

Cue Reliability
Although many nonBayesian models have considered the effects of cue reliability on the
evolution of developmental plasticity, with few exceptions (e.g., [23–25]) most have compared
organisms with access to perfect cues to organisms with no access to cues. By contrast, recent
Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy 3
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Bayesian models show that many important effects of cues on development occur when
individuals are repeatedly exposed to cues that are moderately reliable, as opposed to either
very reliable or very unreliable. If a cue is very reliable (e.g., close to 100% accurate), then every
individual is expected to quickly adjust its estimate of the environmental state to the value
indicated by the cue. Conversely, if a cue is very unreliable (close to 0% accurate) it will have little
or no discernable effect on the estimates of any individual. By contrast, repeated exposure to
moderately reliable cues encourages gradual (limited) changes in estimates of the environmental
state across ontogeny, as well as variation across individuals in their estimates of the same
environmental state at the same age and time [7–12].

A cue can be moderately reliable because it is more likely (but not much more likely) to occur for
some environmental states than others (e.g., [26,27]), or as a result of errors in perceptual
systems (e.g., [28,29]). For example, a particular color might be a moderately reliable indicator of
fruit quality because that color can occur on fruits with a range of nutrient levels and/or because
individuals have difficulty detecting that color against background vegetation [30]. To the extent
that conditions in the external environment (e.g., noise or low light conditions) increase percep-
tual errors, the reliability of the same cue might be lower in field studies than under controlled
laboratory conditions.

Recent Bayesian models show that repeated exposure to moderately reliable cues results in
more gradual changes in phenotypic traits (i.e., developmental trajectories with shallower slopes)
than is the case for repeated exposure to cues with high reliability [7–12], thus confirming earlier
suggestions that cue reliability limits developmental plasticity [31]. However, these models
suggest another reason why moderate cue reliabilities are important: differences among
individuals or among individuals with different genotypes in developmental trajectories are more
likely to occur when cues aremoderately reliable thanwhen cue reliability is either very low or very
high. On the one hand, if cues are moderately reliable, stochastic variation in cue exposure leads
to variation among individuals in their estimates of the environmental state at any given time. As a
result, even if every individual began with the same naive prior, one would expect to observe
variation among individuals in their developmental trajectories and trait values at the end of the
developmental period [7,8,11]. On the other hand, when cues are moderately reliable, variation
among individuals in their naive priors encourages predictable individual differences in develop-
mental trajectories; this occurs even if every individual is exposed to the same cues [9,10].

Priors
In contrast to many Bayesian learning models (e.g., [32–34]), Bayesian models of development
assume that priors can vary across individuals, genotypes, or populations. Priors have two
important effects on DE. First, the discrepancy between the prior distribution and the likelihood
function for a given cue is positively related to DE (Figures 1A,B and 2). If the prior and the
likelihood for a cue are highly congruent (e.g., if both indicate that the level of danger is 0.2 on a
scale of 0 to 1), then there would be little reason to expect individuals to respond to repeated
exposure to that cue by changing their phenotype. By contrast, if the prior and the likelihood are
very discrepant (e.g., if the prior indicates that the level of danger is 0.8, but the cue indicates that
it is 0.2), then repeated exposure to that cue would change an individual's estimate of the
environmental state and, hence, encourage change in its phenotype.

Second, the confidence of the prior is positively related to DE (Figures 1A,C and 2). The
confidence of a naive prior indicates an individual's level of confidence in its estimate of the
environmental state before it is exposed to any cue. In two-state models, the confidence of the
prior is lowest when p = 0.5, and highest when p = 0 or 1. In continuousmodels, the mean of the
prior can provide an estimate of the environmental state, E, and the variance of the prior can
provide an estimate of an individual's level of confidence in that estimate [9] (Figure 1A,C).
4 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy



TREE 2059 No. of Pages 9

Two-state model Con�nuous model

0

1

0.8

0.6

0.4

0.2

0

Es
�m

at
e 

of
 th

e 
st

at
e

1

0.8

0.6

0.4

0.2

0

Es
�m

at
e 

of
 th

e 
st

at
e

0 AgeAge

Likelihood

State
0 1

P 
(C

|S
ta

te
)

(A) (B)

Figure 2. How Estimates of The State Change over Time as A Function of Different Priors in Two-State and
Continuous Models. (A) In a two-state model, the state of the world (e.g., the type of habitat) is either A or B. Each
individual's current estimate of the state, E, is indicated by its current value of p, where p is its current estimate of the
probability that the state is A. Three individuals with naive priors of 0.1, 0.5 and 0.9 (indicated by their p values at age 0) are
repeatedly exposed to the same cue, C, with a likelihood function that indicates that the state is more likely to be A than B [p
(CjA) = 0.55, p(CjB) = 0.45]. E changes the most across ontogeny when p at age 0 = 0.1 (a result of the discrepancy rule).
However, the rate of change in E early in life (i.e., the slope of each line immediately after age 0) is highest for individuals with a
naive prior of 0.5. This is because a naive prior of 0.5 is less confident than a naive prior of either 0.1 or 0.9. (B) In a
continuous model, the state of the world (e.g., the level of danger) can take on any value from 0 to 1. In this model, each
individual's current estimate of the state, E, is indicated by the mean of its prior or posterior. Nine individuals with naive priors
with different means (0.1, 0.5 or 0.9) and different variances (high, [4_TD$DIFF]unbroken lines; medium, [5_TD$DIFF]broken lines; and low, dotted
lines) are repeatedly exposed to the same cue, C. Cue C has a right-biased likelihood function (small box), indicating that the
state ismore likely to be higher than lower. Across ontogeny, the change in E is highest for individuals whose naive priors had
a mean of 0.1 (a result of the discrepancy rule). For naive priors with the same mean, the change in E across ontogeny is
positively related to the variance of the prior, because priors with high variances are less confident than priors with low
variances. Modified from [35] (A) and [9] (B).
The confidence of the prior is important because, all else being equal, DE is higher when the prior
is less confident than when it is more confident (Figure 1A,C). The effects of prior confidence on
DE make intuitive sense: if an individual was very sure about its initial estimate of the environ-
mental state, it should be less likely to revise that estimate based on a moderately reliable cue
than if it was unsure about its initial estimate.

Specific Predictions of Bayesian Models of Development
Current Bayesian models make several interesting predictions about patterns of potential and
realized developmental plasticity and developmental trajectories (Box 2).

Predictions about Age-Dependent Changes in Developmental Plasticity
Several Bayesian models predict that developmental plasticity will typically be higher earlier in life
than later in life [ [15_TD$DIFF]7–9,11,12]. This general prediction is consistent with empirical studies indicating
that sensitive periods (in which cues shape phenotypic development to a larger extent than other
periods [35]) often occur early during ontogeny ([36–40], but see [8,41] for exceptions). Another
interesting, as yet untested, prediction is that sensitive periods will last longer (i.e., end at older
ages) in populations or species in which cues have low reliability than in taxa in which
comparable cues havemoderate to high reliability, if the confidence of the naive prior is moderate
to low [11].

Predictions about Individual or Genotypic Differences in Developmental Trajectories
A continuous model predicts that, if neonates with different initial scores for boldness are
subsequently reared in ‘safe’ environments in the laboratory, the intercepts and slopes of their
Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy 5



TREE 2059 No. of Pages 9

Box 2. Experimental Designs for Studying Developmental Plasticity and Developmental Trajectories

In discussing developmental plasticity, it is useful to distinguish between potential plasticity and realized plasticity [10].
Potential plasticity refers to the ability of an individual to generate different phenotypes in response to different cues with a
wide range of likelihoods; it is a hypothetical attribute of an individual. Realized plasticity indicates the extent to which an
individual's phenotype changes or varies in response to a specific cue or set of cues; it is what empiricists measure in their
studies.

Empiricists typically use two experimental designs to study developmental trajectories and developmental plasticity [59].
In ‘within-individual’ designs (Figure IA), different individuals are repeatedly exposed to the same cue or series of cues,
and their trait values are measured at different ages over ontogeny. This design is routinely used to describe individual
differences in the developmental trajectories of subjects as a function of exposure to particular sets of cues.

In ‘replicate-individual’ designs, the goal is to generate individuals with comparable internal states before they are
exposed to different cues. This is accomplished by using individuals with the same or similar genotypes (e.g., isolines,
clones, or full sibs), raised under the same conditions. Individuals with each genotype are then divided into treatment
groups, each of which is exposed to a different cue for the same period of time. At the end of one or more exposure
periods, for each genotype, the mean trait value of each treatment group is measured, and the difference between mean
trait values is used as an index of developmental plasticity of that genotype (Figure IB). Scaled-up versions of replicate-
individual designs have been used for many years to describe differences among populations or species in realized
developmental plasticity.

Bayesian models underscore the distinction between potential and realized plasticity by demonstrating that the realized
developmental plasticity of a given individual or genotype is expected to vary as a function of interactions between its
naive prior and the likelihoods of the cues to which it is exposed over ontogeny [10] (see also [7,9,11] and Figure 1, main
text). Furthermore, by specifying how different naive priors and different cues might interact to encourage changes in E
across a lifetime (e.g., Figure 2, main text), Bayesian models generate predictions about developmental trajectories and
developmental plasticity amenable to empirical tests using within-individual or replicate-individual designs (e.g., see the
section ‘Specific Predictions of Bayesian Models of Development’ in the main text).
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Figure I. Experimental Designs for Studying Individual Differences in Developmental Trajectories and
Developmental Plasticity. (A) Different individuals (indicated by different symbols and colors) are repeatedly exposed
to the same cue, C, from age 0 to age 2. The developmental trajectory of each individual describes how the trait values of
that individual change over ontogeny when it is reared in the presence of a particular cue. (B) Three genotypes (indicated
by different symbols and colors) are each exposed to two different cues (indicated by either [4_TD$DIFF]unbroken or [5_TD$DIFF]broken lines)
from age 0 to age 2. For each genotype, realized plasticity at a given age is indicated by the difference in the mean trait
values expressed by the treatment groups after exposure to their respective cues. In this example, genotype 1 is less
plastic than genotype 2.
developmental trajectories will be negatively related to one another [9] (Figure 2B). This
prediction is supported by data on the development of boldness in individual pigtailed
macaques (Macaca nemestrina) [42]) and lines of mangrove killifish (Kryptolebias marmor-
atus) [43]. A related model predicts that the developmental trajectories of different individuals
will ‘fan in’ (i.e., tend to converge) across ontogeny if individuals that initially express a range
of trait values are reared in the same environment [10]. This prediction is supported by field
data on the developmental trajectories of activity and aggressiveness in red squirrels
6 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy
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(Tamiasciurus hudsonicus) [44] and the developmental trajectories of stress responsiveness
in house sparrows (Passer domesticus) [45].

Predictions about Individual Differences in Potential Developmental Plasticity
The models predict that individuals with more-confident naive priors will be less developmentally
plastic across a range of ages and in response to cues with a range of likelihoods and reliabilities,
than individuals with less-confident priors. These results are consistent with studies of humans,
which suggest that individuals carrying specific alleles are less developmentally plastic than
others in response to different experiences, assays, and situations, and at different ages ([46,47],
but see [48]).

Predictions about Relations between Intragenotypic Variability and Realized Developmental
Plasticity
Intragenotypic variability (IGV) is the variability in trait values of individuals with the same
genotype, reared in the same environment [49,50]. A recent model suggests that the IGV of
naive individuals [16_TD$DIFF]might be negatively related, across genotypes, to the confidence of their naive
priors [9]. In that case, we would expect a positive relation across genotypes between their IGV
before exposure to cues and their plasticity in response to those cues. This contrasts with
previous predictions of positive relations between developmental plasticity and IGV, which
measure IGV after (not before) genotypes have been exposed to cues (e.g., [51,52] [17_TD$DIFF]).

Limited Plasticity and Individual Differences in Plasticity
Bayesian models help shed light on one of the most contentious questions in modern biology:
why organisms do not exhibit ‘perfect’ plasticity [31,53]. Most theoreticians have explained
limited plasticity and individual differences in developmental plasticity by invoking costs of
plasticity [31,54], but, despite considerable effort, empiricists have had difficulty documenting
such costs [53–55]. Less attention has been paid to the ways that information might limit the
evolution and expression of developmental plasticity. Recent Bayesian models build upon earlier
findings that cue reliability can limit plasticity (e.g., [18,23,56]), by demonstrating that exposure to
cues withmoderate reliability results in slower rates of trait development than exposure to perfect
cues, and that even cue-users that follow optimal developmental programs might not attain the
optimal trait values for a given age in a given environment [7–9,11]. They also expand upon earlier
findings by showing that the confidence of naive priors can limit plasticity: limited developmental
plasticity is not only expected when cue reliability is low to moderate, but also when the
confidence of the naive prior is moderate to high [9–11]. Finally, the models predict that individual
differences in developmental trajectories and developmental plasticity will be widespread,
because every individual in a population is unlikely to begin life with the same naive prior,
and because every individual need not be exposed to an identical series of cues over ontogeny.
Thus, even [13_TD$DIFF]in the absence of any costs of plasticity, Bayesian models that assume that
individuals do the best they can, based on the information they have, predict the limited plasticity
and individual differences in plasticity observed in many organisms.

Future Directions: Somatic State in Bayesian Models
Most current Bayesian models of development focus exclusively on the effects of information on
development. However, experiences early in life can affect development not only because they
provide information about the external world, but also because they have direct effects on an
individual's somatic state (i.e., its body size, strength, motor skills, or other enduring aspects of
the phenotype with broad implications for fitness) [57]. Thus far, only one Bayesian model [12]
has predicted the developmental trajectories expected if the same experience (food intake)
simultaneously affects an individual's estimate of the state of the world (food level in the local
habitat) and its somatic state (growth rate). Another question is how to model situations in which
an individual's own somatic state provides it with information about conditions in the external
Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy 7
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Outstanding Questions
How does information interact with
somatic state across ontogeny to
affect developmental plasticity and
developmental trajectories?

Can Bayesian models be used to ana-
lyze the development of traits whose
fitness depends on the trait values of
other organisms (i.e., frequency
dependence)? For instance, there is
empirical evidence that the develop-
ment of various types of social behavior
(aggressiveness or mating behavior)
depends on cues from both the physi-
cal and the social environment, but
currently we lack models to describe
and predict the development of such
traits.

How can empiricists estimate the naive
prior distributions of individuals and
genotypes? Some authors have sug-
gested ways to estimate the means
and variances of naive priors for traits
that are expressed before organisms
have been exposed to cues from the
external environment (e.g., see discus-
world. For instance, if the probability of being attacked by predators declines as a function of
body size in the natural habitat [58], then an individual's current body size might provide it with a
moderately reliable cue to its current risk of predation [9]. Finally, although it is typically assumed
that individuals have highly reliable cues to their own somatic state, this assumption need not
always be valid. In such cases, Bayesian approaches could analyze situations in which personal
experiences with moderately reliable likelihoods provide individuals with cues to their current
somatic state [7].

Concluding Remarks
An emerging trend in ecology and evolution is to model developmental plasticity and develop-
mental trajectories using Bayesian updating. Here, we have reviewed the current set of Bayesian
models and shown that thesemake several predictions, some of which are already supported by
empirical data. As more Bayesian models of development are generated and tested, the value of
the approach will become increasingly clear. Our prior estimate is that Bayesian approaches
might become as central to the study of development as they already are to other fields, such as
learning theory and statistics.
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